

Primary Ciliary Dyskinesia in children

Dr Biju Thomas MD, FRCPCH Senior Consultant in Paediatric Respiratory Medicine KK Women's and Children's Hospital Singapore

Image courtesy Nature 2007

SingHealth Academic Healthcare Cluster

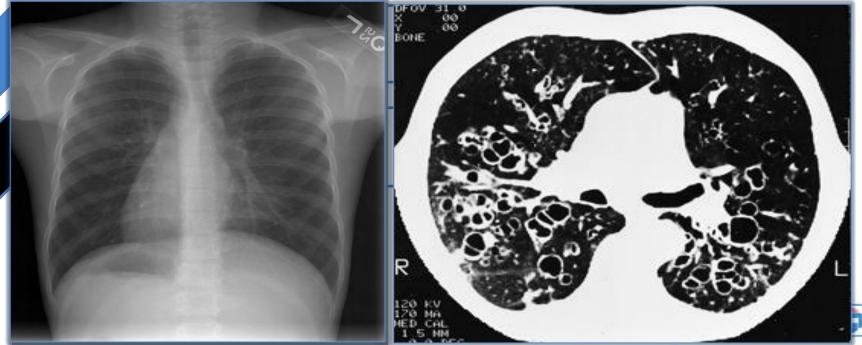
PATIENTS. AT THE HE RT OF ALL WE DO."

Structure of the talk

- Historical perspectives
- Cilia in humans
- Disorders of Motile Cilia Primary Ciliary Dyskinesia
- Clinical features of PCD
- Diagnosis of PCD in the molecular age
- Management of PCD

1683: Anton de Hide – first description of ciliary movement

• Purkinje and Valentin: discovered mammalian cilia 1834


1834

• Purkinje and Valentin: discovered mammalian cilia

1904

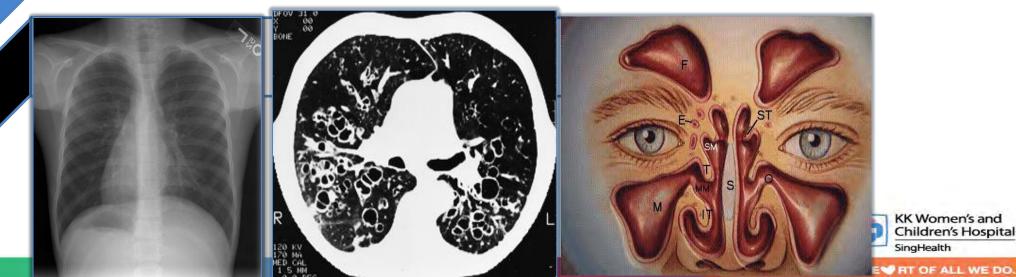
• Siewert

• Situs inversus and Bronchiectasis

1834

• Purkinje and Valentin: discovered mammalian cilia

1904


• Siewert

Situs inversus and Bronchiectasis

Kartagener

1933

• Situs inversus, Bronchiectasis, Sinusitis

1834

• Purkinje and Valentin: discovered mammalian cilia

1904

Siewert

Situs inversus and Bronchiectasis

1933

Kartagener

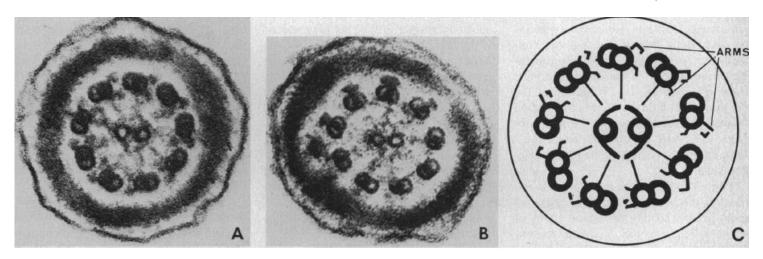
• Situs inversus, Bronchiectasis, Sinusitis

1976

- Afzelius and Pederson
- Abnormal ciliary movement as the cause of the disorder

Afzelius BA. Science 1976; 193: 317-9

Pedersen & Mygind. Nature 1976; 262: 494-5

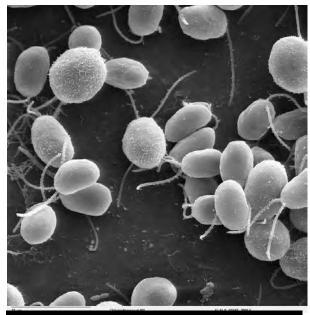


A Human Syndrome Caused by Immotile Cilia

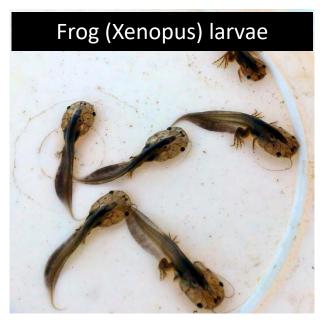
Abstract. Four subjects who produced immotile sperm were studied. In three of the subjects, who had frequent bronchitis and sinusitis, there was no mucociliary transport, as measured by tracheobronchial clearance. Electron microscopy indicated that cilia from cells of these patients lack dynein arms.

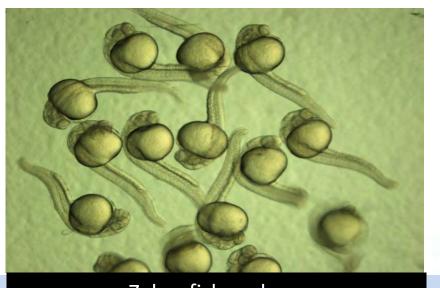
BJÖRN A. AFZELIUS

Wenner-Gren Institute, S-113 45 Stockholm, Sweden

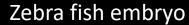

Nature Vol. 262 August 5 1976

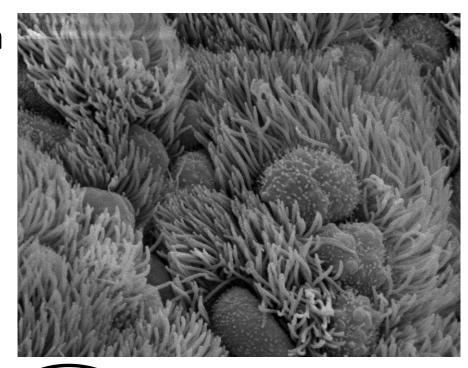
Absence of axonemal arms in nasal mucosa cilia in Kartagener's syndrome Henning Pedersen

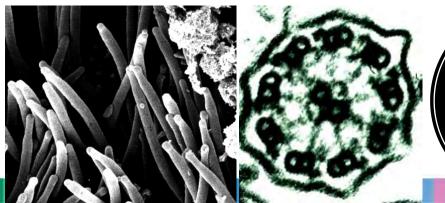

Understanding cilia biology and genetics

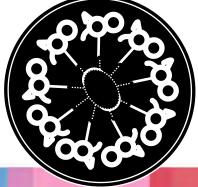


Chlamydomonas Reinhardtii

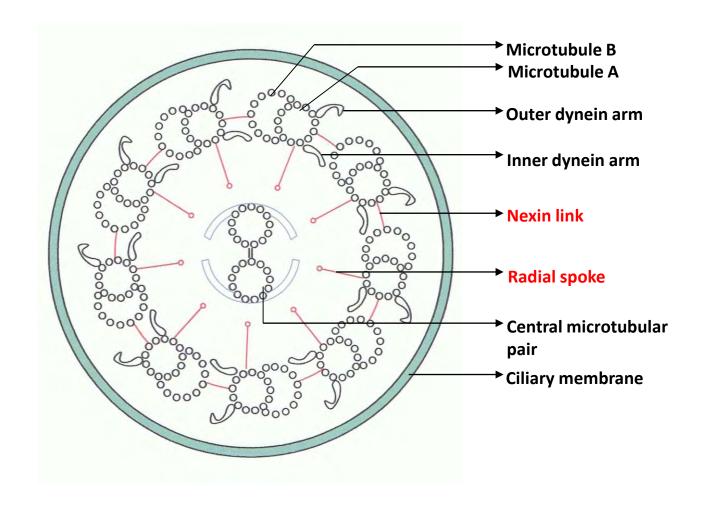

Drosophilia melanogaster

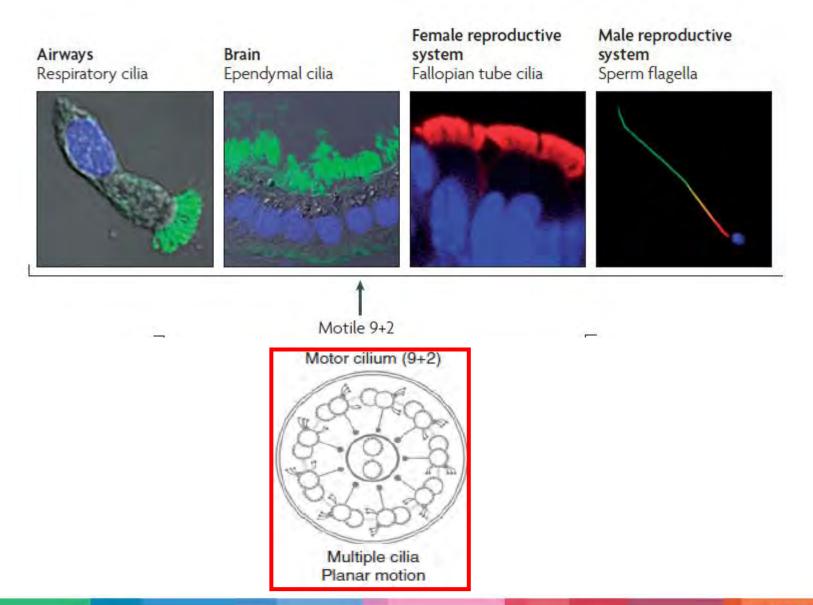

FIT OF ALL WE DO.

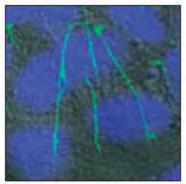


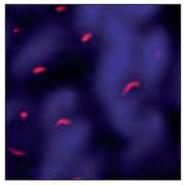

Ciliated respiratory epithelium

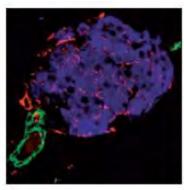
Human respiratory cilia


- ~ 200 cilia/cell
- 6μm long
- 0.3µm wide
- Frequency 10-14 Hz

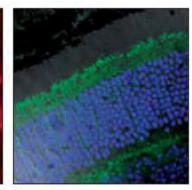



Cross section of human respiratory cilium


Motile Cilia in Humans (9+2)

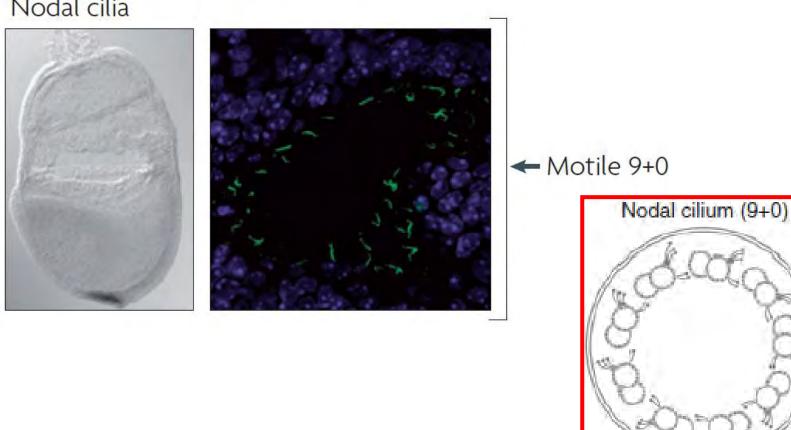

Non-motile Cilia in Humans (9+0)

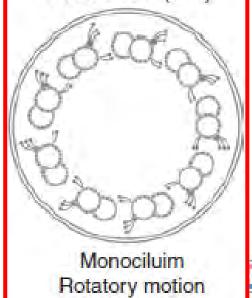
Kidney Renal cilia

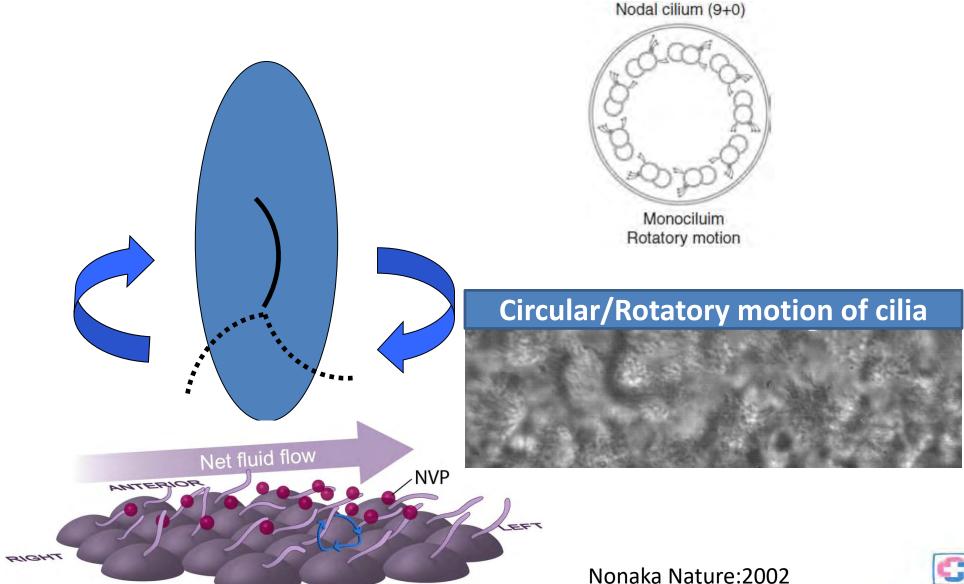

Bile duct Cholangiocyte cilia

Pancreas Pancreatic duct cilia

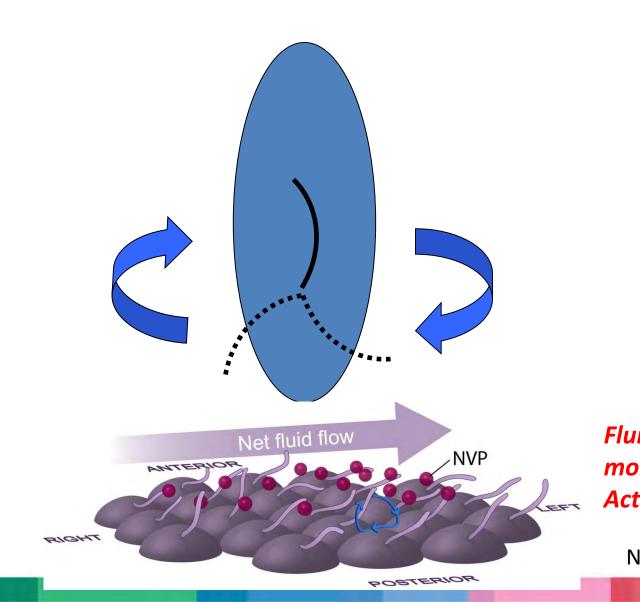
Bone/cartilage Osteocyte/ chondrocyte cilia

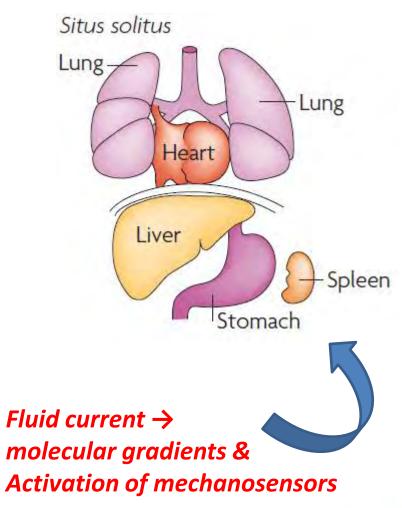

Eye Photoreceptor connecting cilia


Non-motile 9+0


Motile Cilia in Humans (9+0)

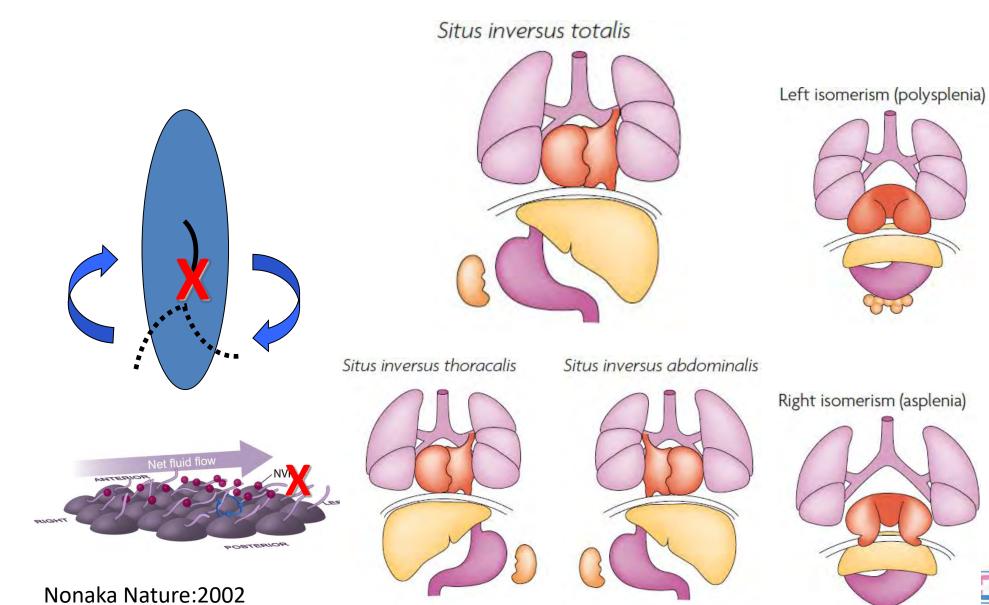
Embryo Nodal cilia




Determination of Situs: Role of Nodal cilia

POSTERIOR

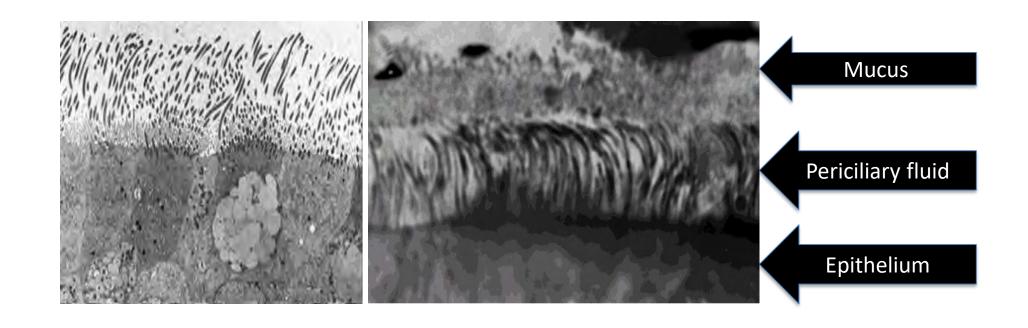
Determination of Situs: Role of Nodal cilia



Nonaka Nature:2002

Situs Inversus: Nodal Hypothesis

KK Women's and Children's Hospital


Disorders of Cilia

Disorders of Primary Cilia "Ciliopathies"

Disorders of Motile Cilia: PCD



Normal mucociliary clearance

Normal mucociliary clearance

Normal mucociliary clearance

Ciliary Dyskinesia

Primary

Secondary

Primary Ciliary Dyskinesia: Epidemiology

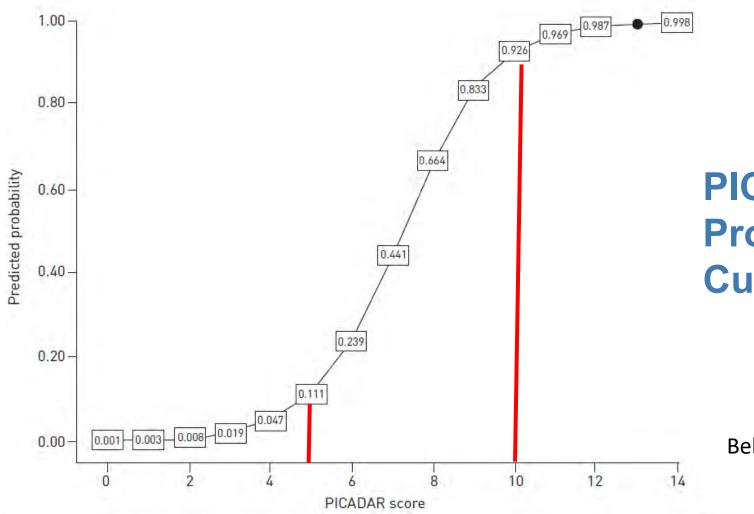
- Prevalence: 1:15,000 (Caucasian)
 Higher in South Asians* (1: 2200) UK study
 Higher with parental consanguinity
- Autosomal recessive, Rarely X-linked or Dominant
- Significantly under diagnosed

Clinical Presentation of PCD

- Infancy late adulthood
- Manifestations vary with age
- Symptoms overlap with common respiratory diseases
- Late diagnosis is common, mean age at diagnosis: >4yr
- 30% have established bronchiectasis at diagnosis

Age-related prevalence of clinical features in PCD

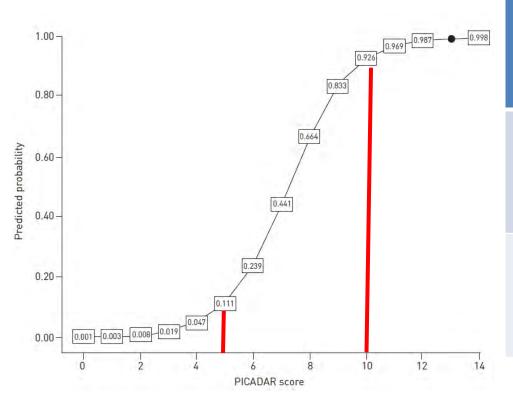
PCD clinical feature	Youngest age when feature present in >50% of PCD	Youngest age when feature present in >80% of PCD
Neonatal respiratory distress	12hr of life	24hr of life
Organ laterality defects	Neonatal	
Recurrent otitis media with effusion	Infancy	Infancy
Year-round, daily wet cough	Infancy	Infancy
Year-round, daily nasal congestion	Infancy	Infancy
Recurrent LRTI	Infancy	Preschool
Chronic pansinusitis	Preschool	School age
Bronchiectasis	School age	Adult
Male infertility	-	Adults


KK Women's and Children's Hospital

SingHealth 5

Prlmary CiliaAry DyskinesiA Rule

PICADAR					
Does the patient have a daily wet cough that started in early childhood?	Yes – complete PICADAR No – STOP. PICADAR is not designed for patients without a wet cough				
1. Was the patient born pre-term or full term?	Term	2			
 Did the patient experience chest symptoms in the neonatal period (e.g. tachypnoea, cough, pneumonia)? 	Yes	2			
3. Was the patient admitted to a neonatal unit?	Yes	2			
4. Does the patient have a situs abnormality (situs inversus or heterotaxy)?	Yes	4			
5. Does the patient have a congenital heart defect?	Yes	2			
6. Does the patient have persistent perennial rhinitis?	Yes	1			
7. Does the patient experience chronic ear or hearing symptoms (e.g. glue ear, serous otitis media, hearing loss, ear perforation)?	Yes	1			
	Total score =				

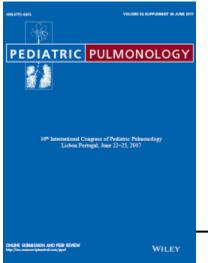

PICADAR ≥ 5					
	Southampton (UK)	Brompton (UK)			
Sensitivity	90%	86%			
Specificity	75%	73%			

PICADAR Probability Curve

Behan L et al. ERJ 2016

Probability of PCD

PICADAR	PICADAR
≥5	≥10
>11%	>90%


Behan L et al. ERJ 2016

Diagnosis of PCD in the molecular age

MAKING A DIAGNOSIS

Pediatric Pulmonology 51:115-132 (2016)

—— State of the Art —

Diagnosis, Monitoring, and Treatment of Primary Ciliary Dyskinesia: PCD Foundation Consensus Recommendations Based on State of the Art Review

Adam J. Shapiro, MD, 1* Maimoona A. Zariwala, PhD, 2 Thomas Ferkol, MD, 3 Stephanie D. Davis, MD, 4 Scott D. Sagel, MD, PhD, 5 Sharon D. Dell, MD, 6 Margaret Rosenfeld, MD, 7 Kenneth N. Olivier, MD, 88 Carlos Milla, MD, 9 Sam J. Daniel, MD, 10 Adam J. Kimple, MD, 11 Michele Manion, 12 Michael R. Knowles, MD, 13 and Margaret W. Leigh, MD, 14 for the Genetic Disorders of Mucociliary Clearance Consortium

European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia

Jane S. Lucas^{1,2}, Angelo Barbato³, Samuel A. Collins ^{1,2}, Myrofora Goutaki^{4,5}, Laura Behan^{1,2}, Daan Caudri^{6,7}, Sharon Dell^{8,9}, Ernst Eber¹⁰, Estelle Escudier^{11,12}, Robert A. Hirst¹³, Claire Hogg¹⁴, Mark Jorissen¹⁵, Philipp Latzin⁵, Marie Legendre^{11,12}, Margaret W. Leigh¹⁶, Fabio Midulla¹⁷, Kim G. Nielsen¹⁸, Heymut Omran¹⁹, Jean-Francois Papon^{20,21}, Petr Pohunek²², Beatrice Redfern²³, David Rigau²⁴, Bernhard Rindlisbacher²⁵, Francesca Santamaria²⁶, Amelia Shoemark¹⁴, Deborah Snijders³, Thomy Tonia⁴, Andrea Titieni¹⁹, Woolf T. Walker^{1,2}, Claudius Werner¹⁹, Andrew Bush¹⁴ and Claudia E. Kuehni⁴

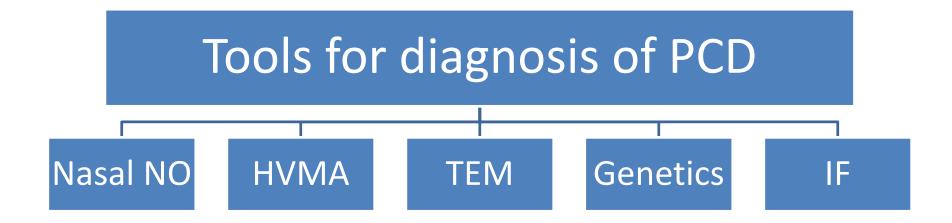
Cite this article as: Lucas JS, Barbato A, Collins SA, *et al.* European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. *Eur Respir J* 2017; 49: 1601090 [https://doi.org/10.1183/13993003.01090-2016].

AMERICAN THORACIC SOCIETY DOCUMENTS

Diagnosis of Primary Ciliary Dyskinesia

An Official American Thoracic Society Clinical Practice Guideline: Executive Summary

Adam J. Shapiro, Stephanie D. Davis, Deepika Polineni, Michele Manion, Margaret Rosenfeld, Sharon D. Dell, Mark A. Chilvers, Thomas W. Ferkol, Maimoona A. Zariwala, Scott D. Sagel, Maureen Josephson, Lucy Morgan, Ozge Yilmaz, Kenneth N. Olivier, Carlos Milla, Jessica E. Pittman, M. Leigh Anne Daniels, Marcus Herbert Jones, Ibrahim A. Janahi, Stephanie M. Ware, Sam J. Daniel, Matthew L. Cooper, Lawrence M. Nogee, Billy Anton, Tori Eastvold, Lynn Ehrne, Elena Guadagno, Michael R. Knowles, Margaret W. Leigh, and Valery Lavergne; on behalf of the American Thoracic Society Assembly on Pediatrics


This official clinical practice guideline of the American Thoracic Society was approved May 2018

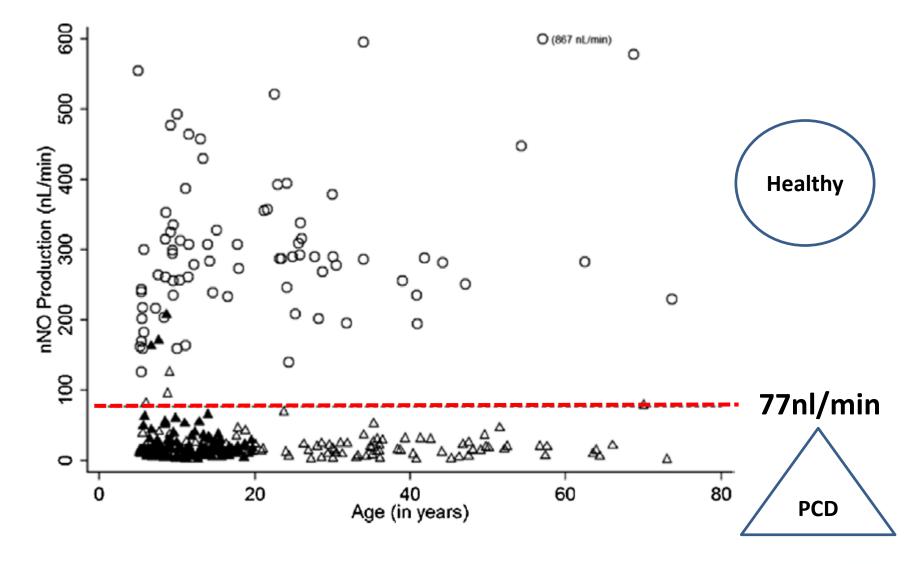
Am J Respir Crit Care Med Vol 197, Iss 12, pp 1524-1533, Jun 15, 2018

No Gold Standard Diagnostic test

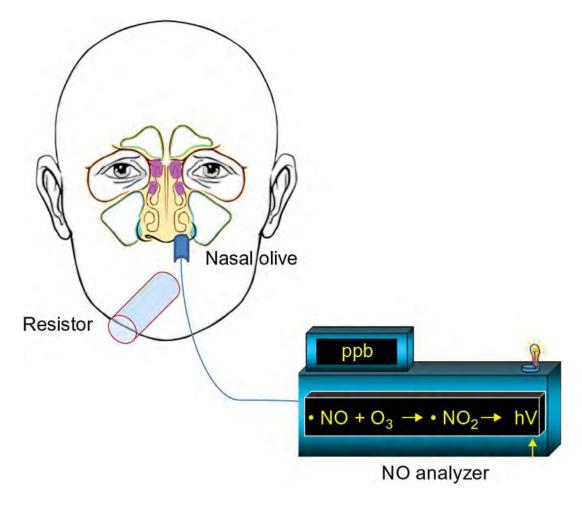
NO = Nitric Oxide

HVMA = High speed Video Microscopy Analysis

TEM = Transmission Electron Microscopy

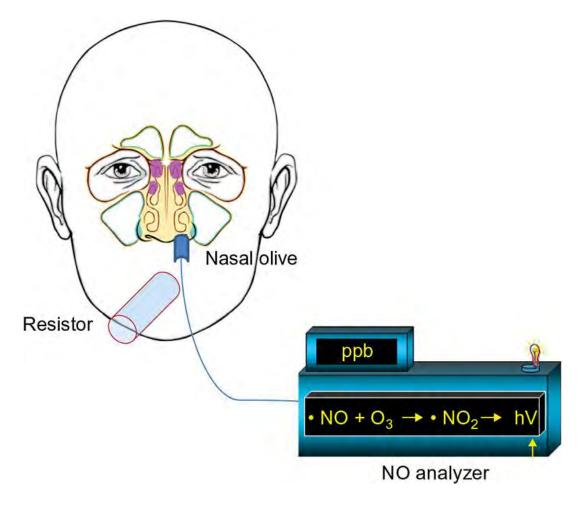

IF = Immunofluorescence

Nasal NO


nNO	Study Population	Sampling method	Threshold nl/min	Sensitivity	Specificity
Marthin 2011	117 referrals 14 PCD	Breath holding with oral exhalation	72	1.0	0.94
Leigh 2013	155 referrals 71 PCD	Oral exhalation, velum closure	77	0.99	0.75
Beydon 2015	86 referrals 49 PCD	Velum closure	82	0.91	0.86
Jackson 2015	301 referrals 34 PCD	Breath Hold, velum closure	30	0.90	0.95

Nasal NO in PCD and healthy controls

NIOX MINO® Nasal



Chemiluminescence analyser

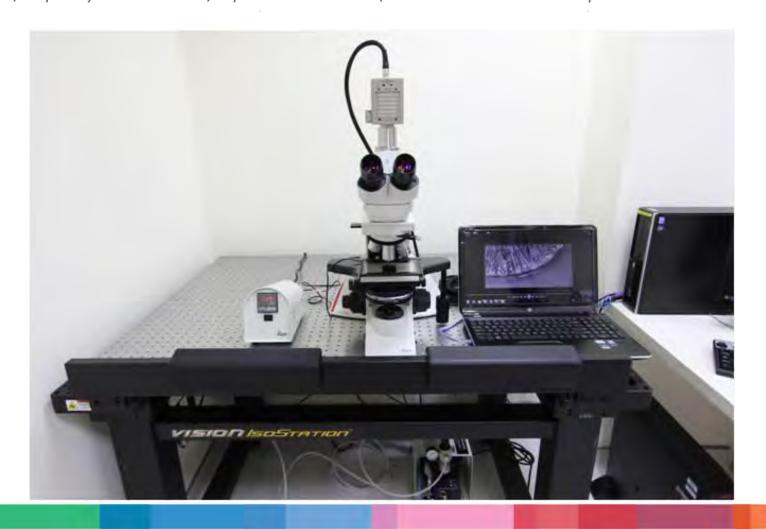
Electrochemical analyser

NIOX MINO® Nasal

Chemiluminescence analyser

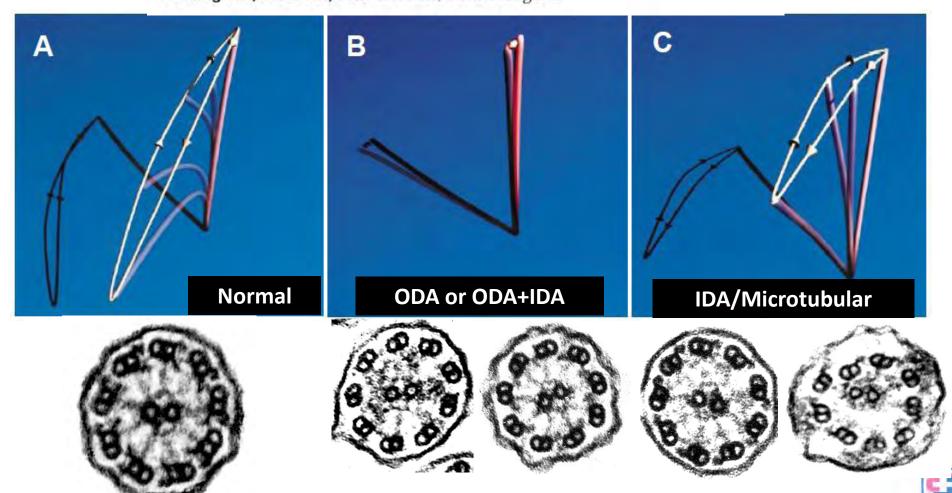
Electrochemical analyser

Obtaining sample: Nasal brushing For HVMA, TEM and IF

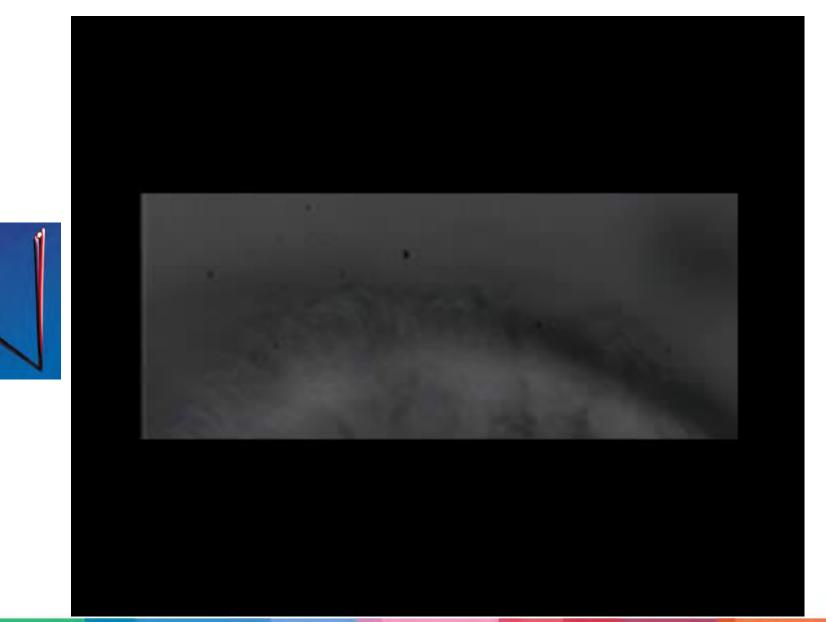


MEDICAL SPECIAL DELIVERY

New diagnostic service for Primary Ciliary Dyskinesia at KKH


Dr Biju Thomas

Consultant, Respiratory Medicine Service, Department of Paediatrics, KK Women's and Children's Hospital

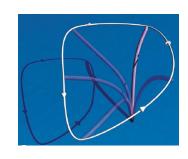

Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia JACI 2003

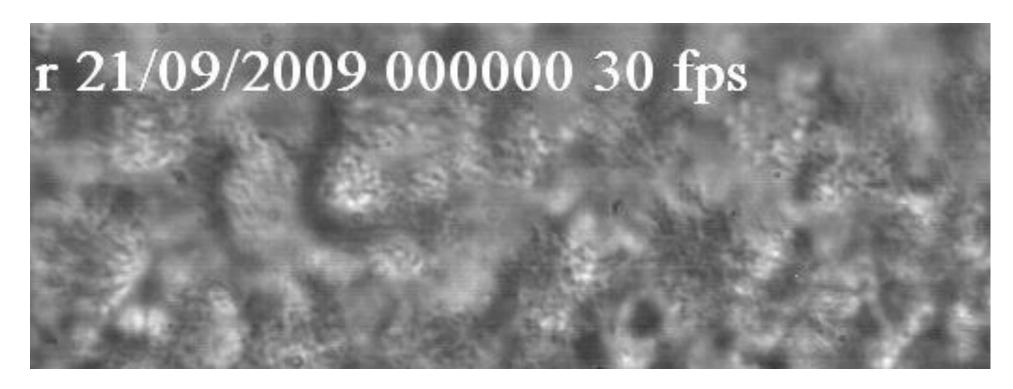
Mark A. Chilvers, MRCPCH, Andrew Rutman, and Christopher O'Callaghan, FRCPCH, PhD Leicester, United Kingdom

KK Women's and Children's Hospital

Immotile cilia

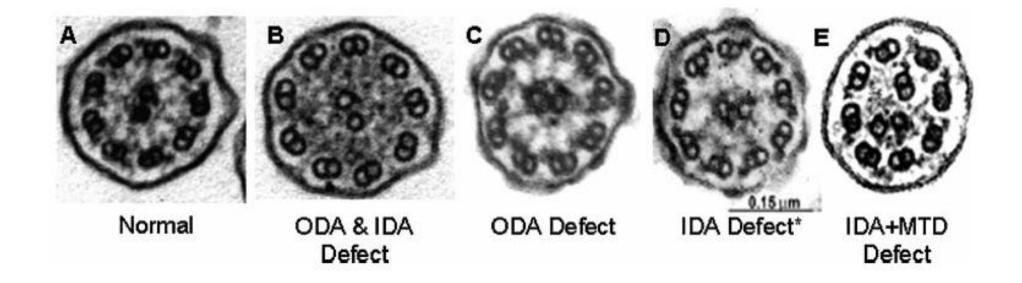
Stiff beating cilia

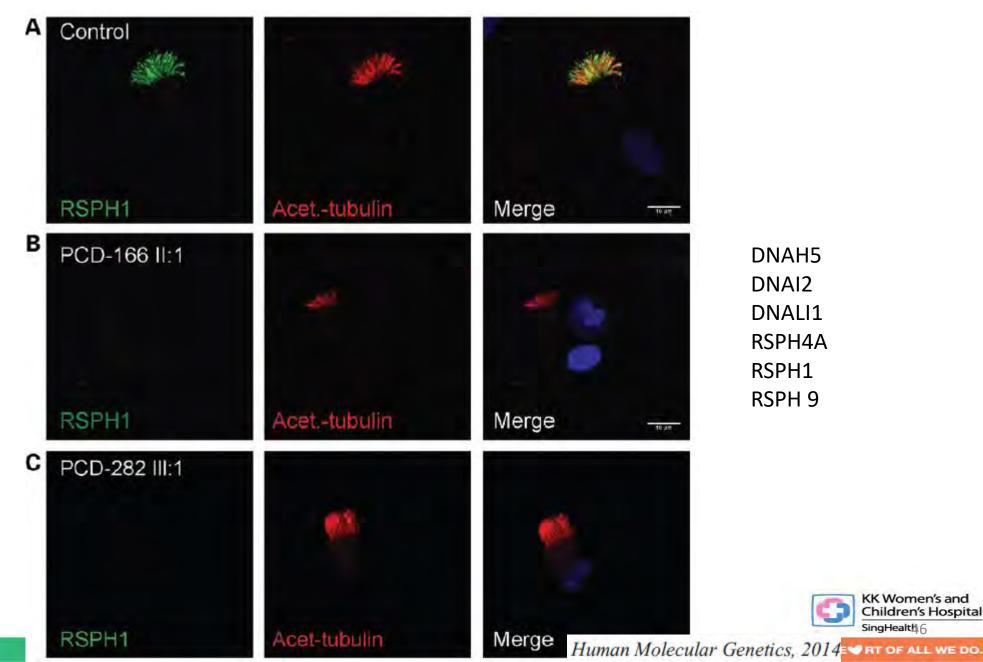




KK Women's and

SingHealth


Circular beating cilia



Transmission Electron Microscopy

Immunofluorescence

KK Women's and Children's Hospital

SingHealt 6

Genetics

Genetics

- Genetically heterogeneous, NOT a single gene/locus
- Majority autosomal recessive
- Rarely, dominant or X-linked
- ~39 disease causing mutations identified
- Bi allelic mutations in one disease causing gene
- No documented cases of digenic inheritance (heterozygous mutations in two different PCD gene)

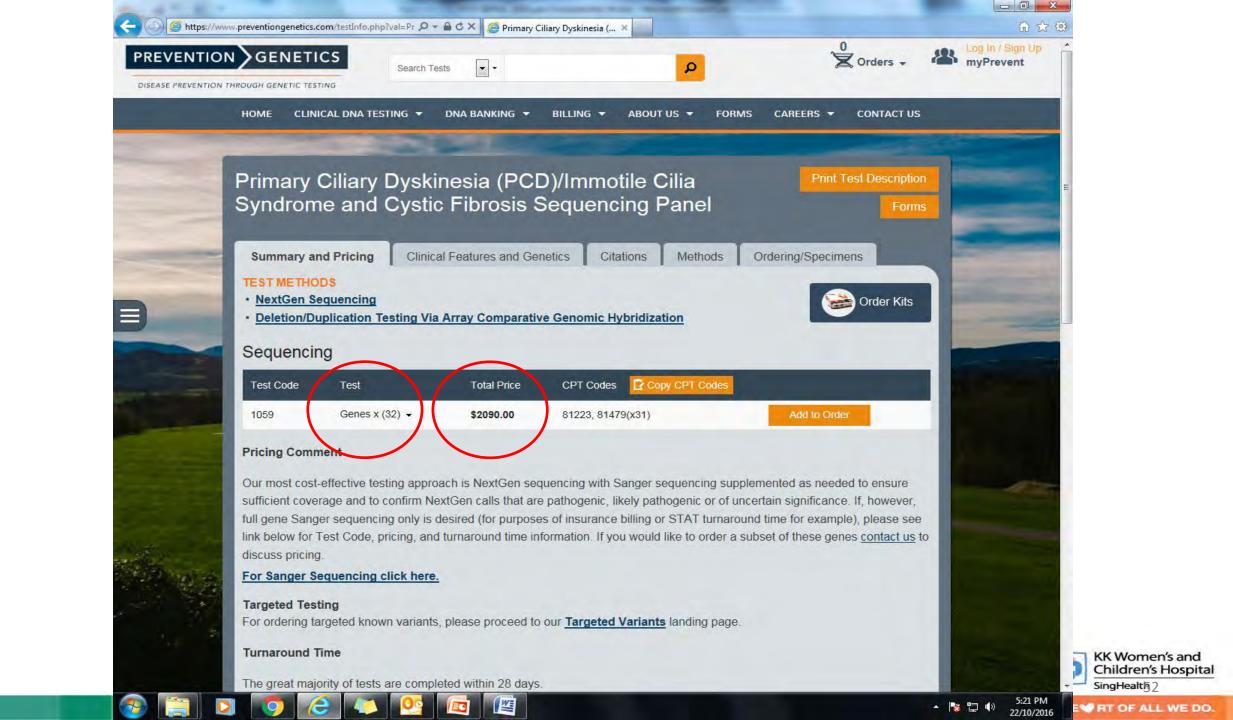
Genetic basis of about 30% patients with PCD - unknown

PCD genes	Prevalence in PCD	Ciliary structural defect	Detected on current commercial PCD NGS panels
NME8	+	Partial ODA defect	Yes
DNAH5	++++	ODA defect	Yes
DNAI1	+++	ODA defect	Yes
DNAI2	++	ODA defect	Yes
DNAL1	+	ODA defect	Yes
CCDC114	++	ODA defect	Yes
CCDC103	++	ODA ± defect	Yes
DNAAF1	++	ODA and IDA defect	Yes
DNAAF2	++	ODA and IDA defect	Yes
DNAAF3	+	ODA and IDA defect	Yes
LRRC6	++	ODA and IDA defect	Yes
HEATR2	+	ODA and IDA defect	Yes
RPGR	+	Normal	Yes
OFD1	+	Normal	Yes
DNAH11	+++	Normal	Yes
CCDC39	+++	IDA defect + MTD defect	Yes
CCDC40	+++	IDA defect + MTD defect	Yes
RSPH9	+	Central pair defect or normal	Yes
RSPH4A	++	Central pair defect or normal	Yes
RSPH1	++	Central pair defect or normal	
RSPH3	+	Central pair defect or normal	
CCNO	+	Oligocilia (residual axoneme normal)	% of all PCDs
MCIDAS	+	Oligocilia (residual axoneme abnormal)	70 OF AIL PODS
DNAH8	+	Not available	
CCDC151	++	ODA defect	+ :<1%
ARMC4	++	ODA defect	
DYX1C1	+	ODA and IDA defect	++ : 1-4%
C21orf59	+	ODA and IDA defect	+++ : 4-10%
ZMYND10	++	ODA and IDA defect	
SPAG1	++	ODA and IDA defect	++++ : >15%
HYDIN	+	Normal	
CCDC164 (DRC1)	+	Mostly normal (N-DRC defect)	-
CCDC65 (DRC2)	+	10,000,000	Shapiro AJ. Ped Pul 2016

FT OF ALL WE DO.

Shapiro AJ. Ped Pul 2016

PCD genes	Prevalence in PCD	Ciliary structural defect		NGS panels
NME8	+	Partial ODA defect		Yes
DNAH5	++++	ODA defect		Yes
DNAI1	+++	ODA defect		Yes
DNAI2	++	ODA defect		Yes
DNAL1	+	ODA defect		Yes
CCDC114	++	ODA defect		Yes
CCDC103	++	$ODA \pm defect$		Yes
DNAAF1	++	ODA and IDA defect		Yes
DNAAF2	++	ODA and IDA defect		Yes
DNAAF3	+	ODA and IDA defect		Yes
LRRC6	++	ODA and IDA defect		Yes
HEATR2	+	ODA and IDA defect		Yes
RPGR	+	Normal		Yes
OFD1	+	Normal		Yes
DNAH11	+++	Normal		Yes
CCDC39	+++	IDA defect + MTD defect		Yes
CCDC40	+++	IDA defect + MTD defect		Yes
RSPH9	+	Central pair defect or normal		Yes
RSPH4A	++	Central pair defect or normal		Yes
RSPH1	++	Central pair defect or normal		
RSPH3	+	Central pair defect or normal		
CCNO	+	Oligocilia (residual axoneme normal)	0/ of a	II PCDs
MCIDAS	+	Oligocilia (residual axoneme abnormal)	/0 UI a	II LOD2
DNAH8	+	Not available		
CCDC151	++	ODA defect	+	: <1%
ARMC4	++	ODA defect	•	
DYX1C1	+	ODA and IDA defect	++	: 1-4%
C21orf59	+	ODA and IDA defect	444	: 4-10%
ZMYND10	++	ODA and IDA defect		
SPAG1	++	ODA and IDA defect	++++	: >15%
HYDIN	+	Normal		
CCDC164 (DRC1)	+	Mostly normal (N-DRC defect)		
CCDC65 (DRC2)	+	1. I DEPOSIT	Shapiro AJ. P	od Dul 2016


EV RT OF ALL WE DO.

Shapiro AJ. Ped Pul 2016

PCD genes	Prevalence in PCD	Ciliary structural defect	Detected on current commercial PCD NGS panels
NME8	+	Partial ODA defect	Yes
DNAH5	++++	ODA defect	Yes
DNAI1	+++	ODA defect	Yes
DNAI2	++	ODA defect	Yes
DNAL1	+	ODA defect	Yes
CCDC114	++	ODA defect	Yes
CCDC103	++	$ODA \pm defect$	Yes
DNAAF1	++	ODA and IDA defect	Yes
DNAAF2	++	ODA and IDA defect	Yes
DNAAF3	+	ODA and IDA defect	Yes
LRRC6	++	ODA and IDA defect	Yes
HEATR2	+	ODA and IDA defect	Yes
RPGR	+	Normal	Yes
OFD1	+	Normal	Yes
DNAH11	+++	Normal	Yes
CCDC39	+++	IDA defect + MTD defect	Yes
CCDC40	+++	IDA defect + MTD defect	Yes
RSPH9	+	Central pair defect or normal	Yes
RSPH4A	++	Central pair defect or normal	Yes
RSPH1	++	Central pair defect or normal	
RSPH3	+	Central pair defect or normal	
CCNO	+	Oligocilia (residual axoneme normal)	% of all PCDs
MCIDAS	+	Oligocilia (residual axoneme abnormal)	70 OF ALL PODS
DNAH8	+	Not available	
CCDC151	++	ODA defect	+ :<1%
ARMC4	++	ODA defect	. ~170
DYX1C1	+	ODA and IDA defect	++ : 1-4%
C21orf59	+	ODA and IDA defect	*** · 4 40%
ZMYND10	++	ODA and IDA defect	+++ : 4-10%
SPAG1	++	ODA and IDA defect	++++ :>15%
HYDIN	+	Normal	
CCDC164 (DRC1)	+	Mostly normal (N-DRC defect)	
CCDC65 (DRC2)	+	Mostly normal (N-DRC defect)	Shapiro AJ. Ped Pul 2016

KK Women's and Children's Hospital SingHealth 1

EV RT OF ALL WE DO.

PCD: Recommended Panel of Diagnostic Tests

	Potential for false positive	Potential for false negative
Nasal NO (nNO) (<77nl/min)	Low*	Low
Transmission Electron Microscopy (TEM)	Variable†	Variable‡
High speed Video Microscopy Analysis (HVMA)	Variable§	Moderate§
PCD genetic test	Low¶	Moderate¶
Immunofluorescence (IF)	Unknown	Unknown

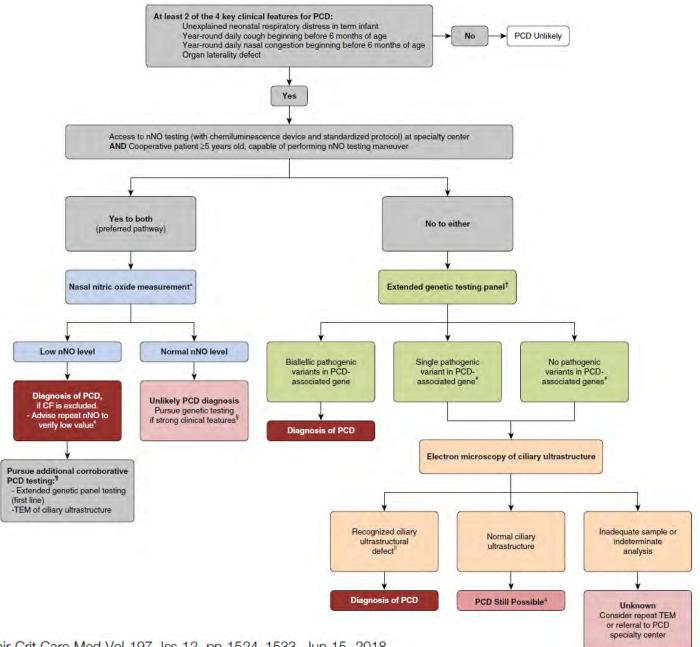
^{*} CF needs to be excluded. False positive: Viral infection, Epistaxis, Non atopic sinusitis.

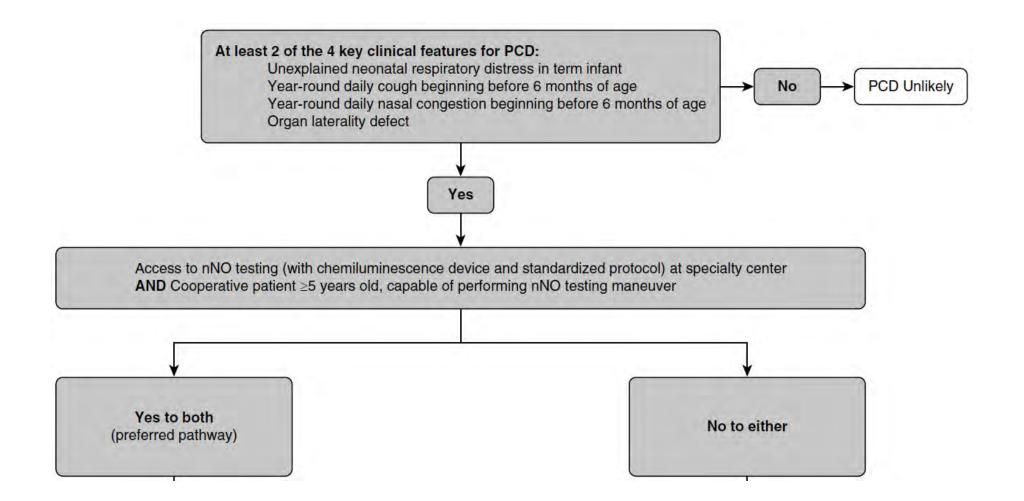
- † Infection, irritants, improper specimen handling/processing, inexperience.
- ‡ Several disease causing mutations can have normal TEM or only subtle changes.
- § Secondary changes, subtle changes may be missed (inexperience).
- ¶ 30% PCD have no identifiable mutation, may miss large insertions/deletions.

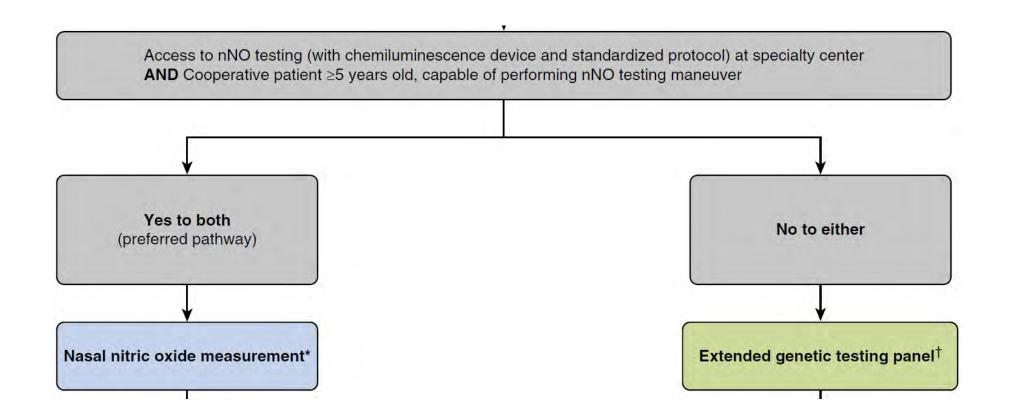
AMERICAN THORACIC SOCIETY DOCUMENTS

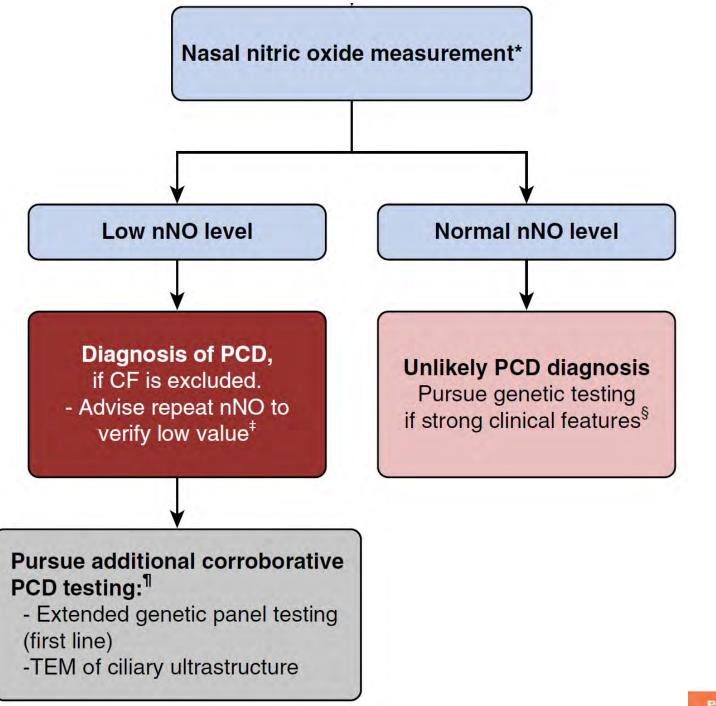
Diagnosis of Primary Ciliary Dyskinesia

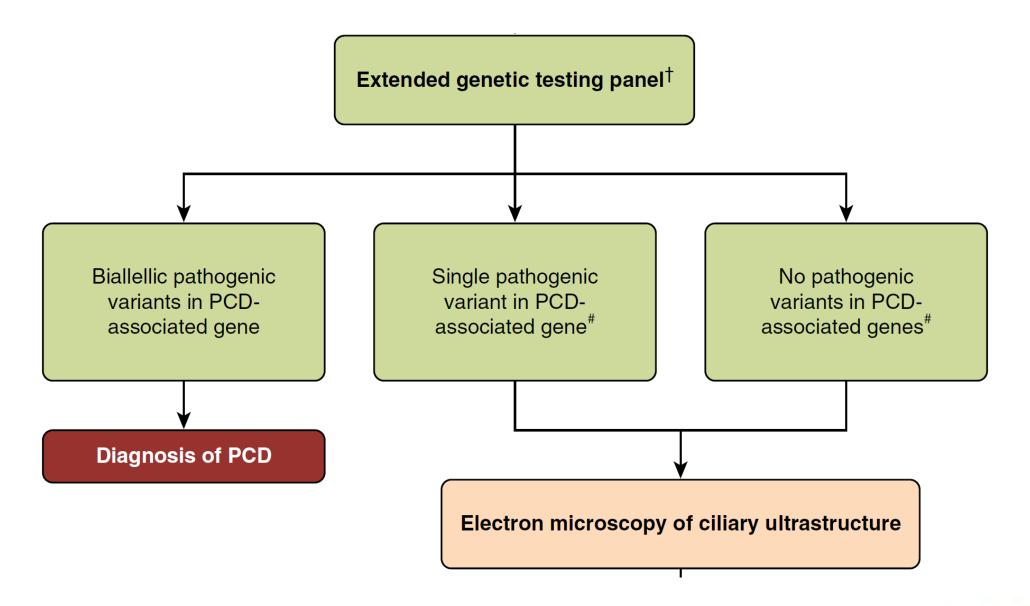
An Official American Thoracic Society Clinical Practice Guideline: Executive Summary

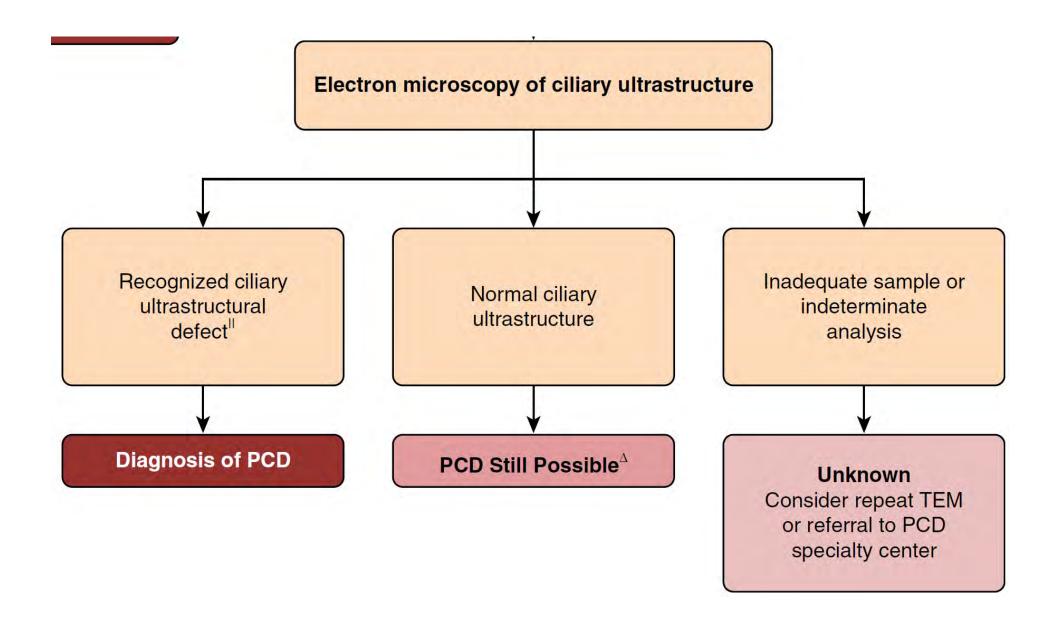

Adam J. Shapiro, Stephanie D. Davis, Deepika Polineni, Michele Manion, Margaret Rosenfeld, Sharon D. Dell, Mark A. Chilvers, Thomas W. Ferkol, Maimoona A. Zariwala, Scott D. Sagel, Maureen Josephson, Lucy Morgan, Ozge Yilmaz, Kenneth N. Olivier, Carlos Milla, Jessica E. Pittman, M. Leigh Anne Daniels, Marcus Herbert Jones, Ibrahim A. Janahi, Stephanie M. Ware, Sam J. Daniel, Matthew L. Cooper, Lawrence M. Nogee, Billy Anton, Tori Eastvold, Lynn Ehrne, Elena Guadagno, Michael R. Knowles, Margaret W. Leigh, and Valery Lavergne; on behalf of the American Thoracic Society Assembly on Pediatrics


This official clinical practice guideline of the American Thoracic Society was approved May 2018




Am J Respir Crit Care Med Vol 197, Iss 12, pp 1524-1533, Jun 15, 2018





	Clinical +	≥ 1 Diagnostic Test
Newborn (0-1m)	Situs inversus totalis + Unexplained neonatal respiratory distress at term birth	TEM Genetic test HVMA
Children (1m-5 years)	≥2 major PCD clinical criteria	TEM Genetic test HVMA
Children>5 years & Adults	≥2 major PCD clinical criteria	Nasal NO TEM Genetic test HVMA

TEM : Diagnostic abnormality

Genetic test : Biallelic mutation in one PCD associated gene

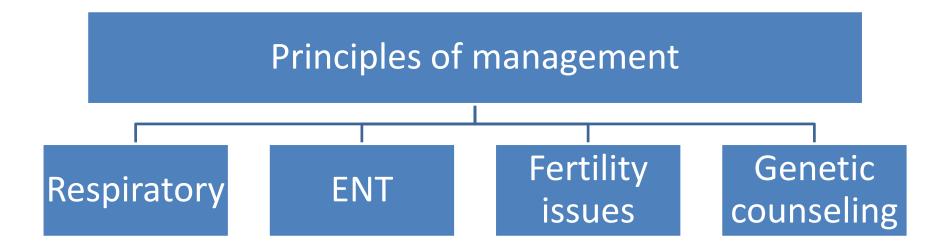
HVMA : Persistent and diagnostic abnormality on ≥2 occasions Nasal NO : <77nl/min on 2 occasions, >2m apart, with CF excluded

Major clinical criteria*

- 1. Unexplained neonatal respiratory distress (term) with lobar collapse \pm CPAP/O₂ for >24 hr.
- 2. Any organ laterality defect SIT, SA or Heterotaxy
- 3. Daily, year-round wet cough starting in the first year of life OR Bronchiectasis on chest CT
- 4. Daily, year-round nasal congestion starting in the first year of life OR pansinusitis on sinus CT

KK Women's and Children's Hospital SingHealt 1

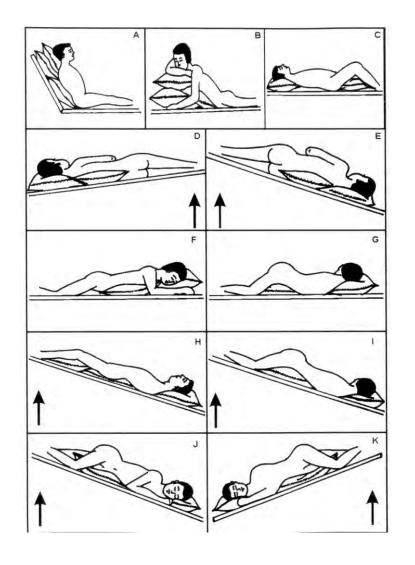
^{*}Exclude other differentials such as CF and immune deficiencies.


Choosing the test(s)

- Diagnostic test accuracy
- Confidence in the estimates of the test
- Patient values and preferences
- Costs
- Feasibility
- Acceptability

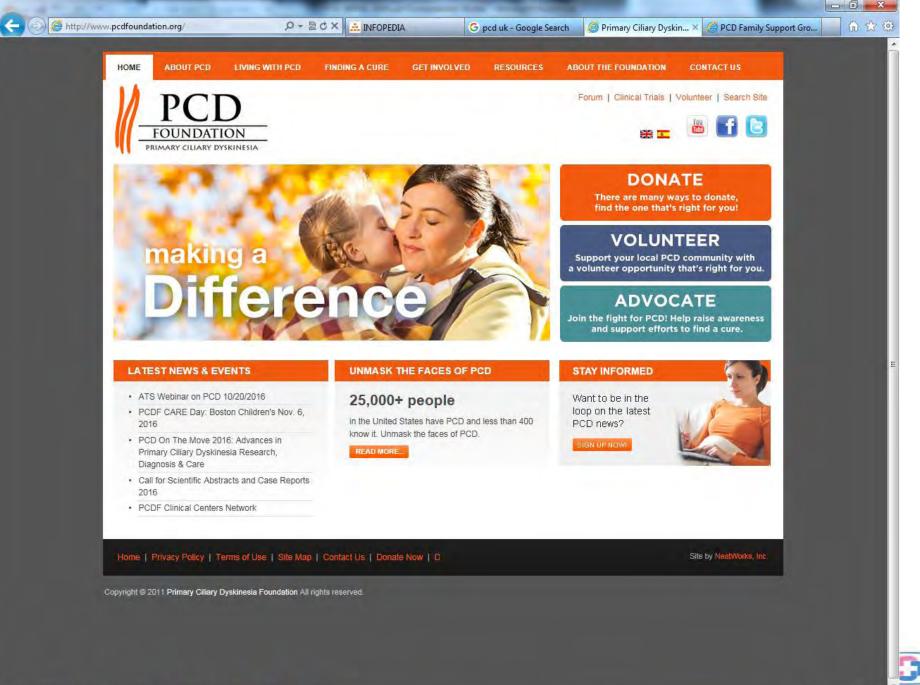
Management of patients with PCD

No Cure



Summary of recommended re	espiratory management of children with PCD
Clinic visit	2-4 times/year
Sputum/cough swab	At every clinic visit If respiratory exacerbations
Culture for Non Tuberculous Mycobacteria/Fungi	Every 2 years If not responding to culture-directed antibiotics Consider screening for ABPA
Spirometry	2-4 times/year
Imaging: CXR	At diagnosis, once every 2-4 years During severe exacerbations
Imaging: Chest CT	At least once (age ~ 5-7 years)
Chest Physiotherapy, exercise	Daily
Vaccinations	Routine childhood vaccines Pneumococcal vaccination Annual influenza vaccine RSV immunoprophylaxis in the first winter (case by case basis)
Antibiotics for exacerbations	Mild – Oral Severe - IV
Charaine Allet al Dad Divine an alegai 2010	

Physiotherapy


	Respiratory the	erapies to co	nsider on a case by case basis in PCD
	Long term antibiotics	Oral	Co-trimoxazole Macrolide
		Nebulised	Chronic PA colonisation
	Inhaled hyperosmolar agents	Hypertonic saline (3-7%)	Limited benefits in non-CF bronchiectasis No studies in PCD Proper equipment sterilization – important
		Mannitol	Limited benefits in non-CF bronchiectasis No studies in PCD
DNAse (dornase-alfa)		e-alfa)	No trials in PCD, few case reports Adverse effects in non-CF bronchiectasis
Inhaled bronchodilators		dilators	Before nebulised hypertonic saline Reactive airway disease
ICS+LABA		4	Consider if associated asthma
IVIG			Consider if humoral immune deficiency present
Lobectomy		У	Severe localised bronchiectasis, caution
Lung transplantation		tation	Caution - situs anomalies
	Shanira Allatal Dad Dulm	applogy 2016	

Management of ENT problems

- Chronic otitis media with effusion universal
 - grommets: controversial
 - antibiotics
 - hearing tests, hearing aids, speech therapy
 - tympanoplasty
- Chronic rhinosinusitis
 - saline lavages
 - nasal steroids
 - antibiotics
 - surgery

Involve
Paediatric ENT Surgeon &
Speech Therapist

HOW TO HELP

What is PCD?

NEWS AND EVENTS

Need to talk?

Latest News

ERS Patient Event 2016 Wednesday, October 05, 2016

Have you had your flu jab?

Wednesday, October 05, 2016

25th Anniversary Cruise Party 4th September 2016

Thursday, September 08, 2016

PCD Day Video 2016

Thursday, July 28, 2016

Lastest research news from the Royal Brompton

Thursday, July 21, 2016

PCD Day at Woburn Safari Park Thursday, June 23, 2016

Tweets by @PCD_UK

PCD Family Suppor

18 October at 08:35

Welcome

Welcome to our website which was created in 2010 with the help of a grant from Jeans for Genes.

The website provides an up to date information service about the condition, how it is diagnosed and how to live with it on a daily basis. Please look at the video case studies with real life people affected by PCD telling their stories.

Primary Ciliary Dyskinesia (PCD) is an inherited, relatively rare condition associated with the abnormality of cilia (microscopic hairs that beat in the airways, sweeping secretions out of the respiratory tract). PCD may affect the lungs, nose, sinuses, ears and fertility.

The condition involves recurrent infections in the nose, ears, sinuses and lungs. If left untreated can lead to a form of lung damage known as 'bronchiectasis'.

Up to 50% of patients with PCD also have dextrocardia (heart on the right side) and situs inversus (internal organs on opposite side to normal).

The mainstay of treatment is chest physiotherapy and targeted antibiotics enabling individuals to lead normal lives. Any problems resulting from PCD vary from person to person.

We hope you find the site useful and welcome any comments or suggestions about it.

Wish to donate?

Contact us

Better Experimental Screening and Treatment for Primary Ciliary Dyskinesia http://bestcilia.eu/

Conclusions

- PCD is a rare disease
- Symptoms overlap with common respiratory diseases
- Awareness and high index of suspicion are crucial
- There is no single gold standard diagnostic test
- Know when to refer to a specialised PCD centre

Early diagnosis and management may improve outcome

Thank you

biju.thomas@singhealth.com.sg

